TNF Induction of NF-κB RelB Enhances RANKL-Induced Osteoclastogenesis by Promoting Inflammatory Macrophage Differentiation but also Limits It through Suppression of NFATc1 Expression

نویسندگان

  • Zhijun Zhao
  • Xiaodong Hou
  • Xiaoxiang Yin
  • Yanyun Li
  • Rong Duan
  • Brendan F. Boyce
  • Zhenqiang Yao
  • Juha Tuukkanen
چکیده

TNF induces bone loss in common bone diseases by promoting osteoclast formation directly and indirectly, but it also limits osteoclast formation by inducing expression of NF-κB p100. Osteoclast precursors (OCPs) are derived from M1 (inflammatory) and M2 (resident) macrophages. However, it is not known if TNF stimulates or limits osteoclast formation through regulation of M1 or M2 differentiation or if RelB, a partner of p100, is involved. To investigate these questions, we treated bone marrow cells (BMCs) with M-CSF alone or in combination with TNF to enrich for OCPs, which we called M-OCPs and T-OCPs, respectively. We found that TNF switched CD11b+F4/80+ M-OCPs from Ly6C-Gr1- M2 to Ly6C+Gr1-CD11c+ and Ly6C-Gr1-CD11c+ M1 cells. RANKL induced osteoclast formation from both Ly6C+Gr1- and Ly6C-Gr1- T-OCPs, but only from Ly6C+Gr1- M-OCPs, which formed significantly fewer osteoclasts than T-OCPs. Importantly, Ly6C+Gr1- cells from both M- and T-OCPs have increased expression of the M1 marker genes, iNOS, TNF, IL-1β and TGFβ1, compared to Ly6C-Gr1- cells, and Ly6C-Gr1- cells from T-OCPs also have increased expression of iNOS and TGFβ1 compared to cells from M-OCPs. Both RANKL and TNF increased RelB mRNA expression. TNF significantly increased RelB protein levels, but RANKL did not because it also induced RelB proteasomal degradation. TNF inhibited RANKL-induced NFATc1 mRNA expression and osteoclast formation from M-OCPs, but not from T-OCPs, and it did not induce Ly6C+Gr1-CD11c+ or Ly6C-Gr1-CD11c+ M1 macrophages from RelB-/- BMCs. Furthermore, overexpression of RelB in M-OCPs reduced RANKL-induced osteoclast formation and NFATc1 mRNA expression, but it increased TNF-induced OC formation without affecting NFATc1 levels. Thus, TNF induction of RelB directly mediates terminal osteoclast differentiation independent of NFATc1 and limits RANKL-induced osteoclastogenesis by inhibiting NFATc1 activation. However, the dominant role of TNF is to expand the OCP pool by switching the differentiation of M-CSF-induced M2 to M1 macrophages with enhanced osteoclast forming potential. Strategies to degrade RelB could prevent TNF-induced M2/M1 switching and reduce osteoclast formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pim-1 regulates RANKL-induced osteoclastogenesis via NF-κB activation and NFATc1 induction.

Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells. In this study, we demonstrate that Pim-1 positively regulates RANKL-induced osteoclastogenesis and that Pim-1 expression can be upregulated by RANKL signaling during osteoclast differentiation. The silencing of Pim-1 by RNA interference or overexpression of a dominant negative form of Pim-1 (P...

متن کامل

Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling

Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-κB ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In thi...

متن کامل

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. ...

متن کامل

A Medium-Chain Fatty Acid, Capric Acid, Inhibits RANKL-Induced Osteoclast Differentiation via the Suppression of NF-κB Signaling and Blocks Cytoskeletal Organization and Survival in Mature Osteoclasts

Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of ...

متن کامل

Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities

Osteoclast differentiation is dependent on the activities of receptor activator NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Given that RANKL plays a critical role in osteoclast formation and bone resorption, any new compounds found to alter its activity would be predicted to have therapeutic potential for disorders associated with bone loss. Methylsulfonylmethane (MSM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015